
In order to forrnulate a fatigue relation, the semirange in shear stres s and the 
mean shear stress are needed. These stresses are defined as 

Smax - Smin 
Sr = 2 

(5a, b) 

respectively . . 

The Goodman fatigue relation in terms of shear stresses is assumed. This relation 
is 

where Se is the endurance limit in shear and Su is the ultimate shear stress. For Su = 
1/2 au, where au is the ultimate tensile stress, this relation can be rewritten as: 

( 6) 

The stresses Sr and Sm given by Equations (5a, b) can be calculated from elasticity 
solutions. In order to employ the fatigue relation (6) for general use, it is as sumed that 
Se can be related to Suo This is a valid assumption as shown by Morrison, et al(lO). 
From the data of Reference (10), it is found that the following relation between Se and 
au may be as sumed: 

(7) 

Substitution of Relation (7) into (6) gives 

(8) 

For design purposes this equation can be made conservative by rewriting it as 

3Sr + 2Sm = a, where a ~ au (9) 

Equation (9) now has a factor of safety, 0u/ a and can be expected to predict lifetimes for 
10 6 cycles and greater for ductile steels based upon the Goodman relation and available 
fatigue data. (Of course, stress concentration factors due to geometrical discontinuities 
or material flaws would reduce the expected lifetime. ) 

Fatigue Criterion for High-Strength Liner 

Triaxial fatigue data on high- strength steels (au ~ 250 ksi) are not available. In 
fact, fatigue data of any sort are very limited. Therefore, a fatigue criterion for high­
strength steels under triaxial fatigue cannot be as well established as it was for the 
lower strength steels. The high- strength steels are expected to fail in a brittle manner. 
Accordingly, a maximum tensile stress criterion of fatigue failure is postulated. 
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Because fatigue data are limited while tensile data are available, the tensile 
stresses (O)r and (O)m are assumed to be related to the ultimate tensile strength by two 
parameters a r and am, which are defined as follows: 

(lOa, b) 

where (O)r is the semirange in stress, (O)m is the mean stress*, and 01 is less than or 
equal to the ultimate tensile strength depending upon the factor of safety desired. In 
order to get some estimations of what values a r and am may be, some fatigue data from 
the literature on rotating- beam and push-pull tests are examined. References (11), (12), 
(13), and (14) give such fatigue data for 18% Ni maraging, H-ll, D6AC, and Vascojet 1000 
and other high-strength steels having ultimate tensile strengths of 250, 000 to 310, 000 
psi at room temperature. 

The fatigue life again is found to depend on the range in stress and the mean stress, 
and upon the temperature. This dependence is illustrated in Figure 3 for 104 to 105 

cycles life in terms of the parameters a r and am. The 1000 F temperature data are for 
Vascojet 1000. Although a r increases with temperature for this steel, the ultimate 
tensile strength decreases and the fatigue strength at 104 to 105 cycles for ~ = a re­
mains nearly constant over the temperature range of 75 F to 1000 F. 
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FIGURE 3. FATIGUE DIAGRAM FOR 104 -105 CYCLES LIFE FOR HIGH­
STRENGTH STEELS AT TEMPERATURES OF 75 F - 1000 F 

a r and am are defined by Equations (lOa, b) 

The fatigue data available are only for positive and zero mean stresses. However, 
there is evidence that compressive mean stress may significantly increase the fatigue 
strength(15,16). The reasons for this are thought to be that compression may reduce the 
detrimental effect of fluid pressure entering minute cracks or voids in the material and 
the compression may restrain such flaws from growing. Since the liner of a high-

• O"r and 0" m are defined by expressions similar to Equations (5a. b) for Sr and 8m. 
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